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The behavior o / a  circular magnetic fluid seal in the narrow gap between an immovable shaft and a rotary 

hyperbolic concentrator of the magnetic fluid flow surrounding it is studied. The range of the dimensionless 

rotation parameter within which the seal is stable is determined. 

1. Introduction. In magnetic-fluid seals (MFS) of rotary shafts, the magnetic fluid (MF) is held by the 

high-gradient magnetic field created by a circular concentrator of the magnetic flux surrounding the shaft. Magnetic 

forces ensure equilibrium of the MF volume owing to the external pressure drop and centrifugal forces. A poorly 

studied important factor is deformation of the free MF surface at high rotation velocities of the shaft. Usually the 

surface shape is either prescribed [ 1, 2 ] or determined in an approximation of the prescribed velocity distribution 

ignoring capillary forces [3, 4 ]. Calculations, however, show that even a comparatively low shaft rotation velocity 

can cause substantial deformation of the free surface. As a result, the velocity in the MF volume is redistributed 

thus exerting, in turn, a pronounced influence on surface formation. 
A solution of the problem in the absence of an external pressure drop was begun earlier [5, 61. There the 

ease is considered in which a magnetic gap is formed by the smooth surface of the rotary shaft and an immovable 

profiled surface, i.e., a concentrator of the magnetic flux. Simulation of the free MFS surface is accomplished by 
solving numerically a system of integro-differential equations whose complicated form makes it difficult to obtain 

an analytical solution even in simple situations. 

Of particular importance is determination of the critical rotation velocities at which the fluid is thrown from 

a magnetic gap by centrifugal forces. In [5, 6 ], the onset of an MFS crisis is indicated by instability in the iteration 

process for solution of the steady-state problem of equilibrium forms of a free surface. In [7, 8 ] this method was 
extended to investigation of drop equilibrium in gravitational, uniform magnetic fields and in a potential field of 

centrifugal forces and tested in the cases that permit an analytical solution. One of the goals of the present work 

was to substantiate the reliability of such simulation of the free MFS surface instability developed due to the action 

of nonpotential centrifugal forces. In the model, the smooth inner cylinder was immovable, while the profiled outer 

cylinder rotated. In this case, a theoretical analysis of the free surface stability and analytical estimates for critical 

parameters are possible. 

2. General Equations. The mathematical model is formulated rather fully in [5, 6 ]. Here we discuss in 

brief its main statements. The model is based on a system of hydrodynamic equations of an incompressible, 

isotropic, linear-viscous fluid with constant transfer coefficients which is supplemented with the force of interaction 

with a magnetic field in an approximation of equilibrium magnetization [9 l. In the case of a laminar flow and in 

the absence of eccentricity between the concentrator and the shaft, magnetic and hydrodynamic forces possess axial 

symmetry. However, since the relative width of the magnetic gap is small, a two-dimensional approximation is 
reasonable when the equations of motion are written in the local Cartesian coordinate system and the rotational 

character of motion is allowed for by conservation of the centrifugal force. 

Let the coordinate origin be on the shaft surface (assumed to be two-dimensional) with x the radial, z the 

axial, and y the azimuthal directions (see Fig. 1). 
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A field of centrifugal forces in the fluid has no potential in the general case, and the eddy component of 
this field generates a secondary flow. However, its intensity is low as compared to the main azimuthal flow. Ignoring 

the influence of the secondary flow, the distribution of the azimuthal velocity, as follows from the Navier-Stokes 

equation for straight-line stationary motion, satisfies the Laplace equation 

VZv = 0 (1) 

and the boundary conditions 

= 0 ,  --  = o ,  ( 2 )  
l (p) l (c) l 

where Itp), l(C) and l (s) are the axial cross-sections of a plane surface, concentrator, and free surface, respectively. 

The first two conditions from (2) are those of fluid adhesion to solid walls, while the third condition indicates the 
absence of shear stresses on the free surface. 

In accordance with the potential theory [10l the solution of problem (1) and (2) on the closed contour l 

confining the axial cross section of the magnetic-fluid seal satisfies the following integral equation: 

~v = ~ (u,~ - u~,~) ,17, (a) 
l 

where u = In/5;/5 is the distance between the source point (~, z-') and the observation point (x, z) of the contour l; 

n is the external normal at the source point; ~ and v are the velocities at the source point and at the point of 
observation; dF= (d"x 2 + d's l/z. 

The form of the free MF surface will be described by parametric equations x(s), z(s), where s is the length 
of the contour arc/(s) read from the shaft surface. 

From the condition of pressure constancy due to volumetric magnetic and centrifugal forces as well as to 

magnetic and capillary pressure jumps it follows that the equation of the free surface has the form 

where r = - z " / x '  = x" / z ' ,  the prime indicates differentiation with respect to s; C is an arbitrary constant 

determined from additional conditions. 

3. Closed Mathematical Model. Let us introduce dimensionless variables, choosing as characteristic scales 

the minimum gap width l o for distances and the concentrator velocity v o for velocities. 

Now we write Eq. (3) in terms of dimensionless variables with allowance for conditions (2) for observation 
points on the concentrator surface/(c) the plane shaft surface/(P), and the free surface l (s), respectively: 

f ~..aT- f u,paT= f u.aT-~; 

f u-~.n~- f u n-~dT= f u ndT; 
/(p) + /(c) l(S) l(C) 

(s) 

f .~ .dT-  f . ~ d T + ~ v =  f ..aT. 
/(p) + l(C) l(S) /(c) 

We consider the magnetic gap formed by a plane surface and a hyperbolic concentrator of the magnetic 

flow. In this case, a dimensionless equation of the contour/(c) is of the form 
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x2/cos  2/~ - z2/sin z / / =  1/cos 2 jO 

(see Fig. 1). Such a form of the concentrator  allows an analytical expression to be obtained for an external  magnetic 

field that reflects the main features of the field distribution in the magnetic gap of a real MFS. 

We assume that the shaft and the concentrator are far  from magnetic saturation and their  magnetic 

permeability is /z  >> 1, which allows us to consider the magnetic potential at each of the gap boundaries to be 

constant. Then  the field distribution in the gap is described by the formula 

H = H c sin fl (cos ~ e x - sin ~ e z ) / g ,  (6) 

where ex and ez are unit vectors of the coordinate axes; 

COS (~ = ~ (1 -- 1"2) 1/2 , g = 17"2 -- T2)1/2, 
g 

1/2 
= 0.S c o s ~  (r + + r - )  , 1 - = 0 . S c o s t f f ( r  + - r - )  , r +-" = ( (x  +_ 1 / c o s p )  2 + z  2) 

From (4) with allowance for (6) for the case of magnetic saturation (M - Ms = const) we obtain a system 

of dimensionless differential equations 

Bomlz" m -- X ' ( f  + C) Bo~-nlx" ' , , = �9 Or + c )  ( 7 )  

where 

f = F sf v2x'ds + Sinf f  [ l + x i S h a f t ( x ' s i n ~ - z ' c o s t ~ ) ] .  
o g g 

On the shaft and concentrator  surfaces the kinematic conditions 

x 0 = 0 ,  z l = ( x  2 -  1) 1/2 t an / /  (8) 

and conditions of constancy of the wetting angle �9 

z 0 = - c o s  ~ ,  x o = s i n  , ~ ,  z'~ = c o s  (61 + , ~ ) ,  x'l = s i n  (,s~ + ,~) ; ( 9 )  

are fulfilled, where subscripts 0 and 1 stand for the quantities at the initial (s = 0) and end (s = S) points of the 

free surface; S = ls/lo; ls is the length of the contour/(s). Integrating the first of equations (7) with allowance for 

the boundary conditions, we arrive at an expression for the constant C: 

1 BOm I (cos (61 + a )  + cosct) + f  f x ' d s  . ( I0)  
C = - - X l  0 

A magnetic fluid seal has two free surfaces. We shall consider the case when the pressure drop of the 

external  medium on these surfaces is equal to zero. In this situation the axis x is an axis of bilateral symmetry ,  so 

that only one free boundary,  in fact, is to be calculated and the condition of volume constancy can be written in 

the form: 

S 1 x I tan/5 + z 1 
U =  2 f z x ' d s -  x i z  I + ~ t a n f l l n  . (11) 

0 x I tan fl - z 1 
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Fig. 1. Geometry  of the problem. Free surface configuration at t) U = U. = 

2, F = F .  = 0.246; 2) U = 9; F = Fc(U) = 0.082. 

Fig. 2. Dependences of the z-coordinate of the points of c o n t , !  ,~ the f ree  

sur face  with the  prof i led  (1) and plane (2) gap wa~fls on :the ~rota~on 

parameter  at U = 5. 

The  system of equations (5), (7 ) - ( I I )  represents a closed ma, l . b ~ t i c a l  m~del of a ~ b l e m  within the 
framework of which the free surface is determined by six parameters,  :namely, the dimens&-~,ss volume U, the 

rotation parameter F, which expresents the ratio of centrifugal to magnetic forces, the magnetic i,l~nd :number Born, 
the characteristic magnetic susceptibility Xi, the wetting angle a ,  and the angular  halfw~dthfl of the 'concentrator. 

The problem (5), (7)-(11) was solved numerically by  the method o f  successive ,apprazima~.i~ls 15, 6]. In 

each iteration run system of integral equations (5) was at first solved b~' the method ~ b o n n d a r y  e lements  [11 ], 

and the velocity on the free surface found in the previous iteration was determined,  The  posW~zn of  the ~urface was 

then determined more precisely with allowance for the new 'velocity d i s t r i l ~ io n  by soh4ng i~ob~em ~7)-~(11) using 

an algori thm similar to [7 ]. Computational instability was successfully eliminated with the help  ,af relaxation 

parameters  following the procedure described in [12 ]. 

4. Analysis of Numerical  Results. The  data reported below were obtained at  constar~ v a l u ~  of  fl = ~z/4, 

Xi = 2~- 10 -2,  Born = 200, a -- ~ / 2  typical for MFS conditions. The  rotation parameter  F and ':"volume" U were 
varied. 

Figure 1 shows the results of a typical calculation of the free-surface configuration. It is convenient to 

evaluate the influence of external  parameters on the surface configuration from the coordinates z o and zl,  the points 

of its contact with the plane and profiled, respectively, walls of the gap. As is seen from Fig. 2, these coordinates 

depend on the rotation parameter  F rather  greatly, even at its compartatively small values. It is also worth noting 

that the derivatives dzo/dF and d z l / d F  increase in absolute value with F. 

At some critical values of F = Fc(U), which are dependent  on the volume, the algorithm for solution of the 

s teady-state  problem acquires computational instability, which is interpreted as a manifestation of the physical 

instability of the surface. Calculations have shown that the dependence Fc(U) is determined by the competition of 

two instability mechanisms, one of which dominates al U < U., and the other at - at U > U., where U. is the 

volume corresponding to the maximum rotation parameter  F. --- Fx(U.) prior to which the magnetic-fluid seal can 
be in equilibrium. 

In the region U > U. at F --, F c the values of z 0 and dzo/dF remain finite, while I dz I /dFI ~ oo. This  allows 

us to conclude that in the case of large volumes the instability is caused by displacement of the contact point z! 

over the concentrator  surface. Dependences of the critical Zlc(U) values and corresponding zo(U) values are repre- 

sented in Fig. 3, while those of the critical rotation parameters Fc(U) are shown in Fig. 4. Th e  physical mechanism 

of the instability at U > U. is as follows. As zl increases, the centrifugal ejecting force at this point grows, while 

the gradient  of the magnetic force and, consequently,  the magnetic force holding the fluid in the gap decrease.  At 
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Fig. 3. Dependences of the critical values of the z-coordinate of the points of 

contact on the fluid volume: 1) Zlc; 2) Z0c. 

Fig. 4. Calculated (1) and analytical (2) dependences of the critical values of 

the rotation parameter on the fluid volume. 

the critical point Zlc the components of these forces tangential to the concentrator surface are counterbalanced. The 

condition of thin equilibrium is as follows: 

2 
dH 

/~0 Ms d--- ~ + p  v~ sin 61 = 0 .  
r0 

Hence, with allowance for (6) we find 

cos/~ (Zl2c + tan 2/~)1 / 2 

G = 2 ~)3/2" 
(Zlc ctan2/~ + sin 2 

(12) 

With a further increase the rotation parameter, the fluid is partially ejected from the gap. As a result of decreasing 

volume U, the critical F c value increases (provided that the new volume is also in the interval U > U.). 
The Fc(U) curve constructed with use of analytical formula (12) and numerical values of Zlc is shown in 

Fig. 4 along with the same dependence obtained numerically. For large volumes these dependences are seen to 

agree. The overestimation of the numerical values is attributable to allowance for surface tension forces, which 

hinder fluid ejection. 
On passing to the region of "small" volumes U < U., the critical rotation parameter F c begins to decrease 

with decreasing U. The qualitative change in the dependence is due to a change in the instability mechanism. At 
U < U. the point z0 of contact of the free surface with the shaft is close to the singular point z = 0 at which the 

tangential component of the volume forces changes sign. The physical mechanism of the instability realized upon 

reaching the singular point consists in separation of the magnetic-fluid seal from the shaft surface and formation 

of the fluid layer forced against the concentrator surface by centrifugal forces. The considerable discrepancy be- 

tween the analytical and numerical results in the region of small volumes in Fig. 4 is explained by the fact that 

analytical dependence (12) does not allow for this mechanism. 
It is interesting that the two branches of the plots of the critical parameters (see Figs. 3, 4) corresponding 

to instability different mechanisms are joined in the presence of appreciable discontinuities. The latter are 

reproduced both in the build-up of fluid volume in the course of numerical solution and in its decrease as well. 

111 



Analysis of numerical results shows that obtaining critical F values with respect to computational instability 
gives quite an adequate representation of the onset of physical failure of MFS with increasing rotation velocity of 

the shaft. The important result, we believe, is determination of the limiting value of the critical rotation parameter 
F. ffi 0.246 and the corresponding dimensionless volume U. ffi 2. 

From the definition of the dimensionless parameters F and U we have the following expressions for the 
limiting rotation velocities of the concentrator and the corresponding optimum volumes of the fluid 

= r rao'W Hcro/(~ , v. = V.Z r0 . 

In the general case, the parameters F. and U. depend on the wetting angle a and the angular halfwidth fl of the 
concentrator. The values obtained at a ffi ~t/2 and fl ffi ~t/4 can be chosen as reference quantities for determination 

of more refined dependences F.(a, fl), U.(a, fl). 
The work was carried with financial support from the Fundamental Research Fund of the Republic of 

Belarus. 

N O T A T I O N  

x, z, Cartesian coordinates; x, curvature of the free surface; H, magnetic-field intensity; M, fluid 
magnetization; v, azimuthal velocity of fluid motion; v 0, rotation velocity of outer cylinder; P0, magnetic constant; 
Ms, saturation magnetization of fluid; o, surface tension coefficient; p, fluid density; V, fluid volume; a,  wetting 

angle; r 0, radius of inner cylinder; /0, minimum gap width; h, angular halfwidth between the asymptotes of the 

concentrator hyperbola; Born "poM~/c /0 /o ,  magnetic Bond number; U -  V/(2nrofo); F -  pv~l~/(poMsHsro); Xi - 
Ms~He; Hc " ~o0 ctan h~ [/0(~/2 - h ) ] ,  intensity of the magnetic field at the concentrator top; io0, difference in 

magnetic potentials on the profiled and plane walls. 

R E F E R E N C E S  

1. V.O. Bashtovoi, M. S. Krakov, and S. G. Pogirnitskaya, Magnit. Gidrodin., Mo. 2, 115-221 (1991). 
2. M.S. Krakov and S. O. Pogirnitskaja, Sixth Int. Conf. on Magnetic Fluids, Programme and Abstracts, Paris 

(1992), pp. 434-435. 
3. B.M. Berkovskii, V. F. Medvedev, and M. S. Krakov, Magnetic Fluids {in Russian ], Moscow (1989). 
4. L.P. Orlov, V. K. Polevikov, and V. E. Fertman, Friction and Wear, 3, No. 1, 123-128 (1982). 

5. A.N. Vislovich and V. K. Polevikov, Proc. of the Belarusian Technological Institute, Fiz.-Mat. Nauki, No. 1, 
60-69 (1993). 

6. A.N. Vislovich and V. K. Polevikov, Magnit. Oidrodin., No. 1, 77-86 (1994). 

7. B.M. Berkovskii and V. K. Polevikov, Magnit. Oidrodin., No. 4, 60-66 (1983). 
8. V.K. Polevikov and V. M. Denisenko, Vestnik Belorus. Univ., Ser. 1, Fiz. Mat. Mekh., No. 2, 37-41 (1985). 
9. V.G. Bashtovoi, B. M. Berkovskii, and A. N. Vislovich, Introduction to the Thermomechanics of Magnetic Fluids 

[in Russian ], Moscow (1985). 
10. A.N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian ] (the 5th ed.), Moscow 

(1977). 
11. K. Brebbiya, Zh. Telles, and L. Vroubel, Methods of Boundary Elements lin Russian l, Moscow (1987). 
12. B.M. Berkovskii and V. K. Polevikov, Computational Experiment in Convection [in Russian ], Minsk (1986). 

112 


